Герметик для стеклопакетов в тубах
Какой выбрать герметик для вторичной герметизации стеклопакетов
На данный момент значительно вырос спрос на стеклопакеты, которые стали доступны широкому кругу потребителей. Но, к сожалению, не многие знают нюансы их производства. Используемые герметики должны соответствовать требованиям ГОСТ Р 54173 (ЕН 1279-4:2002) и иметь прочность, адгезионную способность обеспечивающие требуемые характеристики стеклопакетов в рабочем диапазоне температур. Герметики должны быть совместимы между собой и с герметиками, применяемыми при установке стеклопакетов в строительные конструкции. Не допускаются химические реакции между герметиками и их взаимное проникновение . В данной статье мне бы хотелось рассмотреть вторичные герметики, широко используемые на российском рынке, выделить основные плюсы и минусы каждого.
Основные функции вторичных герметиков – это преграда для проникновения влаги внутрь стеклопакета;
вспомогательное средство для монтажа стеклопакета;
обеспечивает жесткость и целостность конструкции.
Для второго герметизирующего слоя применяют полисульфидные (тиоколовые), полиуретановые или силиконовые герметики. Применяемые герметики должны иметь адгезионную способность и прочность, которые будут обеспечивать требуемые характеристики стеклопакетов. Герметики должны иметь гигиенические заключения и их применение должны разрешить органы государственного санитарного надзора .
Сначала ознакомимся с основными свойствами герметика, представляющими интерес для потребителей:
• Время вулканизации
• Долговечность
Динамическая вязкость влияет на производительность оборудования. Чем выше вязкость, тем ниже скорость выхода смеси герметика из смесительного узла экструдера и, соответственно, ниже производительность.
Тиксотропность – это свойство материала сохранять первоначально заданную форму, позволяющее наносить герметик на вертикальную поверхность и препятствующее его вытеканию из стеклопакета. Если бы герметик не обладал достаточной тиксотропностью, то он бы просто стек с торца стеклопакета на пол. Таким образом, эти два на первый взгляд достаточно противоположные свойства должны «уживаться» в герметике.
Адгезия (от лат. adhaesio — прилипание) в физике — сцепление поверхностей разнородных твёрдых и/или жидких тел.
Прочность при расслаивании. Если прочность на расслаивание и межволоконные силы связи слишком малы, адгезионные связи легко разрушаются и нарушается композиционная устойчивость материала. Если межволоконные силы связи слишком велики, то не произойдет внутреннего расслаивания.
Способность к подвижности обозначает способность затвердевшего герметика к циклической подвижности соединения без утраты целостности и без адгезии к материалам деформации.
Усадка после затвердения обозначает процентную утрату первичного объема. Чем меньшая усадка, тем лучше герметик.
Твердость по Шору – это значение, которое характеризует жесткость материалов: резина, и прочие эластичные материалы. Пример: Твердость по Шору воды -0, стали -100. для герметиков стандарт от 40 до 60. Для производителей стеклопакетов этот показатель важен, чтобы определить как будет вести себя готовый стеклопакет под влиянием разных температур. Если твердость ниже стандарта, возможно нарушение адгезии в течение нескольких лет в результате «сжимания» герметика, если выше, под воздействием низкой температуры возможно расширение герметика, что может привести к тому, что стеклопакет лопнет (не выдержит стекло).
Важный этап в организации производства стеклопакетов – выбор герметика.
На данный момент применяются следующие типы вторичных герметиков:
Хотмелты– это однокомпонентные термореактивные составы, большинство из которых размягчаются под действием тепла и застывают на холоде.
Положительные стороны хотмелта: недорогое, простое, машинное оформление процесса. Небольшой срок застывания уже нанесенного герметика.
Отрицательные стороны хотмелтаот солнечного нагревания возможно частичное отекание разогретого хотмелта вниз стеклопакета. Естественно происходит размягчение слоя герметика приводящего к ухудшению механических свойств стеклопакета. Под влиянием низких температур хотмелт твердеет, утрачивает эластичные свойства, даёт трещины. Ветровое воздействие приводит к отрыву стекла от пластичной массы. Влага замерзает в микротрещинах, лёд рвёт эти трещины, в трещины проникает загрязнение. Многократное повторение процесса приводит к разрушению герметика. В конечном счете это негативно сказывается на качестве стеклопакета.
Самые распространенные вторичные герметики- это двухкомпонентные полиуреты и полисульфиды.
Сходства: застывают в процессе смешивания двух компонентов. Оба типа вторичных герметиков обладают высокими прочностными характеристиками и низкими показателями газовой диффузии. Время застывания герметиков примерно одинаковое (2-3 часа предварительное застывание; примерно 24 часа окончательное при соблюдении корректного соотношения компонентов). И полиуретаны и полисульфиды предназначены для высокопроизводительных производств. Стандартной упаковкой является набор бочек: компонент А-190 литров, компонент Б – 20 литров.
Отличия: разные экструдеры для полисульфидных и полиуретановых герметиков. Недопустимо использовать экструдер для тиокола с полиуретаном и наоборот.
Химические различия продуктов приводят к различному поведению смесей, при некотором изменении соотношения компонентов А и Б.
Для полисульфида нарушение соотношений компонентов А и Б в пределах 1:9 или 1:11 приведет только к ускорению или замедлению скорости. Но свойства механического состава не изменятся. При нарушение соотношения полиуретановых компонентов изменяется структуры полученного сополимера (хрупкость, либо смесь не застынет никогда).
Герметики на основе силиконов
Силиконовые герметики так же имеют сильные и слабые стороны: Положительные сторонам: устойчивость к ультрафиолетовому излучению, высочайшая долговечность герметика. Отрицательные стороныКрупный текст: • высокая стоимость;
• высокие показатели газовой диффузии, для достижения характеристик стандартного стеклопакета на основе полисульфида мы вынуждены увеличивать слой силикона, что ведёт к значительному удорожанию стеклопакета;
• длительные сроки герметизации (особенно для однокомпонентного силикона). Полная герметизация 20-30 дней.
• однокомпонентные силиконы имеют ограниченную глубину застывания, что делает практически невозможным слой глубиной более 1 см.
Таким образом, в данной статье мы рассмотрели особенности каждого типа вторичных герметиков.
Не используйте герметики непроверенного качества и неизвестных производителей.’
Герметик для стеклопакетов в тубах
МЫ РАБОТАЕМ:
Пн- Пт С 9.00 до 18.00
Местонахождение
Стеклопакеты – конструкция из двух или нескольких стёкол разделённых по периметру дистанционными рамками или герметиком. Кроме изготовления окон, стеклопакеты используются при структурном остеклении. Внутреннее пространство между стёклами может быть заполнено осушённым воздухом или инертным газам. Сохранность этих сред внутри стеклопакета достигается за счет приклеивания дистанционной рамки и герметизацией по всему периметру.
Первичная и вторичная герметизация
Для изготовления дистанционных рамок используется алюминий, сталь, пластик и комбинированные материалы. Доля первых двух превышает 90 процентов объёмов производства стеклопакетов. Технологии их герметизации одинаковы.
Первый этап герметизации – закрепление дистанционной планки внутри стеклопакета. Для первичного слоя применяются полиизобутиленовые герметики. Низкая паропроницаемость бутила в первую очередь обеспечивает герметичность. Данную операцию может заменить использование лент с нанесенным двухсторонним бутиловым покрытием. При технологии Swingle Strip лента выполняет функции герметика, дистанционной рамки и осушителя.
Далее наносится вторичный слой. Его назначение – структурное скрепление конструкции. Наиболее часто для этой цели применяются полисульфидные герметики , но возможно использование полиуретановых, бутилкаучуковых и силиконовых. Не рекомендуется использовать полисульфидные материалы на дистанционных рамках их ПВХ. Взаимная адгезия этих материалов плоха. В этом случае правильное решение – полиуретановые герметики . Материалы на основе МС-полимеров можно применять, но их цена невыгодна в производстве.
При производстве вакуумных стеклопакетов полимеры не используются. Герметичность достигается за счет спайки стеклофлюсом.
При использовании любых материалов действует правило: «Герметики первичной и вторичной герметизации должны быть совместимы между собой и с материалами для изготовления стеклопакетов и оконных блоков.
Фасовка
Полисульфидные герметики наиболее распространённый материал для вторичной герметизации стеклопакетов. Всегда двухкомпонентные. 80% рынка стеклопакетов используют именно этот материал.
Фасовка, которую выбирают крупные производители одна – бочки по 200 литров. В случае с двухкомпонентными составами будет 20литровое приложение отвердителя. Предприятия мелкие покупают материал 10 и 20 литровыми вёдрами. Бывают банки и меньшей фасовки.
Фасовка в тубы по 600 мл и в картриджи по 310 мл чаще всего используется для ремонтных работ.
Расход
Для всех материалов величины расхода приблизительно равны. Для первичной герметизации 2-3 грамма на 1 п. м. дистанционной планки с одной стороны. Проклейка должна быть двусторонней, расход соответственно удвоится. Перерасход (выше 4 грамм на метр) может привести к утолщению изделия и проникновению герметика во внутреннюю полость стеклопакета. При слое меньше 2 грамм на метр снижаются свойства пароизоляции. Для вторичной герметизации большинство производителей не рекомендуют делать слой тоньше, чем 6 мм. При ширине шва в 20 мм расход герметика будет не менее 120 мл на один погонный метр.
Паропроницаемость. Сравнение
При производстве стеклопакетов паропроницаемость материалов для герметизации является основным показателем. Первый слой всегда – бутиловый герметик. Диффузия водяного пара 0.1-0.2 грамма на квадратный метр площади герметика в сутки. Основная функция вторичного слоя – конструктивное соединение стёкол, но параметры паропроницаемости остаются важными. Для тиоколовых герметиков этот показатель 3-6 г/кв. м в сутки. Лучше показатели полиуретана – 2-4 г/кв. м в сутки, но параметры устойчивости к воздействию ультрафиолета плохие. Паропроницаемость стеклопакетного силикона -15-20 г/кв. м в сутки.
Для заполненных инертными газами стеклопакетов картина другая. Лучшие показатели – у тиоколовых герметиков. Худшие у бутиловых и силиконовых.
Рынок
100% материалов для первичного слоя герметизации стеклопакетов – герметики на основе бутила. Более 80% для вторичного слоя – тиоколовые герметика. Появление новых материалов существенных изменений в области производства стеклопакетов не внесло.
Основную долю рынка занимает продукция европейских компаний KÖMMERLING, Fenzi, Kadmar и российской компании САЗИ .
127018, г. Москва , ул. Складочная, д. 20, стр.1
Как правильно выбрать герметик для стекла?
В быту, строительстве и даже при ремонте автомобиля порой приходится поставить окно, отремонтировать стекло, починить прозрачную пластиковую деталь. При этом важной задачей является герметизация стыков разнородных поверхностей.
Жёсткие замазки, столь популярные в недавнем прошлом, уверенно уступают место современным эластичным пастообразным материалам. Теперь всё чаще при необходимости починить или установить стеклянное изделие используются специализированные герметики в удобной упаковке. При этом достигается решение двух главных задач: механическое соединение деталей и герметизация стыка разных материалов.
Назначение
Для уплотнения стёкол и монтажа оконных рам широчайшее применение находят оконные герметики. Известно, что тепло из дома в значительной мере уходит через оконные проёмы и рамы. Применение для уплотнения оконных швов герметиков позволяет значительно уменьшить подобного рода потери.
Виды и характеристики
Особо можно выделить препараты на цианоакрилатной основе. Они широко используются при ремонте прозрачных изделий не только из стекла, но также прозрачных пластиков. Кроме, собственно, мономера на акриловой основе, он может также содержать различные добавки для повышения стойкости к атмосферным воздействиям, эластичности и тому подобное.
Другую группу представляют полимерные однокомпонентные герметики. Они обеспечивают не столь прочное соединение деталей, зато с их помощью очень удобно уплотнять и герметизировать различные виды конструкционных стыков.
Все средства, будь то цианоакрилатные или любые иные полимерные, являются однокомпонентными. Это значит, что они основаны на одном виде химического вещества. Полимеризация же происходит без помощи особых отвердителей. Процесс запускается просто влагой, которая всегда содержится в воздухе. Разумеется, это сильно упрощает все работы по герметизации.
Описываемые составы, как правило, доступны в следующих видах фасовки:
- цианоакрилатные – маленькие, буквально «на один раз» тюбики с резьбовой пробкой;
- эластичные полимерные герметики, как правило, фасуются в особые тубы-картриджи для монтажных пистолетов;
- спреи поставляются в аэрозольной упаковке.
Составы, применяемые в стекольных работах, должны соответствовать удовлетворять требованиям:
- хорошая адгезия;
- прочность;
- эластичность;
- долговечность;
- устойчивость к атмосферным воздействиям;
- химическая нейтральность.
Рассмотрим некоторые разновидности герметизирующих составов.
Вместо привычной оконной замазки даже для деревянных оконных рам всё чаще применяют акриловый герметик. Продукт обеспечивает хорошее сцепление с разнообразными строительными материалами, морозостоек и универсален как утеплитель, к тому же довольно эластичен. После застывания акрил замечательно штукатурится и красится. Не выделяет опасных токсинов, а потому полностью безвреден как при работе с ним, так и в эксплуатации. Плюс ко всему, обладает противопожарными свойствами.
Чаще всего акриловый герметик используют при работах с фасадом по заделке швов между стенами и оконной арматурой.
А вот внутри помещений его лучше не использовать, потому что после окончательного застывания материал становится пористым. Это приводит к тому, что шов может впитывать из окружающей среды всевозможные загрязнения, отчего внешний вид шва заметно портится. Если же такой вид химии всё-таки пришлось применить на хорошо заметных местах, то его желательно грунтовать и покрасить.
Из недостатков можно отметить то, что он постепенно желтеет, не слишком стоек к воде, морозостойкость его удовлетворительная.
Во всех видах стекольных работ широчайшее применение имеют силиконовые герметики. Такие составы пригодны как для работ внутренних, так и для уличного применения. Они эластичны, прекрасно прикрепляются ко всем материалам. Несмотря на некоторую вязкость, состав хорошо проникает в щели и стыки. Мало того, что он очень удобен в работе, этот материал ещё и недорог.
Но силиконовые составы очень плохо окрашиваются. Кроме того, большинство их разновидностей при работе (до застывания) издают резкий запах уксуса, что накладывает некоторые ограничения на правила монтажа.
Отлично перенося температурные перепады, агрессивные воздействия (в том числе масел), полиуретановый герметик обычно применяется для утепления окон. Он быстро сохнет, неплохо окрашивается. Эластичный и гидрофобный полиуретан также хорошо переносит воздействие влаги и ультрафиолета. Благодаря всем перечисленным положительным характеристикам эти виды герметиков используют в самых различных областях.
К сожалению, полиуретановые составы содержат едкие вещества, что не всегда удобно при мелком ремонте или строительстве.
Полисульфидные соединения послужили основой при создании такого класса герметизирующих составов, как теоколовые герметики. Не зависящие ни от температуры, ни от уровня влажности подобные материалы гарантируют надёжное прилипание, схватывание и стабильное застывание шва. При производстве наружных работ подобные вещества могут считаться лучшим выбором. В дождь, в снег, в морозы – в любую погоду готовые соединения сохраняют свои превосходные качества.
Зачастую называемые «жидким пластиком», полимерные герметики составляются на базе MS-полимеров. Прекрасное закрепление на пластмассах, быстрое затвердевание и удовлетворительная прочность делают такие составы незаменимыми в производстве полимерных оконных рам, так как в результате создаётся цельная с остальными элементами конструкция. Недостатками следует признать не слишком большую механическую прочность и малую эластичность состава. При стыковке в стеклопакете нескольких слоёв стекла, как правило, применяется бутиловый герметик. Созданный на основе каучукоподобных веществ, он обладает высокой эластичностью и хорошей адгезией как к стеклу, так и к металлу.
Шов подобного герметика хорошо препятствует проникновению внутрь стеклопакета водяных паров и воздуха. Упругость и эластичность сохраняются от -55 до +100 градусов. Высокая стойкость к ультрафиолету и безвредность лишь подчёркивают важность такого материала в стекольном деле. Если вам нужен герметик самый прочный, самый стойкий к солнцу, воде и агрессивным жидкостям, тогда можно смело рекомендовать каучуковый.
Высочайшие прочность и стойкость подобных составов таковы, что ими герметизируют швы даже в лодках, что делает их применение оправданным даже несмотря на очень высокую цену.